吴恩达深度学习课程作业L1W3一层隐藏层神经网络
参考
本节目的
- 建立一个含一层隐藏层的神经网络,观察其和逻辑回归实现之间的差异
- 实现单个隐藏层的2分类神经网络
- 使用具有非线性激活函数的神经元,例如tanh
- 计算交叉熵损失
- 实现前向和后向传播
1-导入模块
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
import sklearn.linear_model
%matplotlib inline
np.random.seed(2030)
1.1-planar_utils.py
def func_plot_decision_boundary(model, X, y):
"""
plot decision boundary
:param model:
:param X:
:param y:
:return
"""
# Set min and max values and give it some padding
x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole grid
Z = model(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Plot the contour and training examples
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
def func_sigmoid(x):
"""
Compute the sigmoid of x
Arguments:
x -- A scalar or numpy array of any size.
Return:
s -- sigmoid(x)
"""
s = 1/(1+np.exp(-x))
return s
def func_load_planar_dataset():
"""
load_planar_dataset
"""
np.random.seed(2030)
m = 400 # number of examples
N = int(m/2) # number of points per class
D = 2 # dimensionality
X = np.zeros((m,D)) # data matrix where each row is a single example
Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
a = 4 # maximum ray of the flower
for j in range(2):
ix = range(N*j,N*(j+1))
t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
Y[ix] = j
X = X.T
Y = Y.T
return X, Y
def func_load_extra_datasets():
"""
load_extra_datasets
"""
N = 200
noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
no_structure = np.random.rand(N, 2), np.random.rand(N, 2)
return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
1.2-testCases.py
def func_layer_sizes_test_case():
"""
layer sizes test case
"""
np.random.seed(2030)
X_assess = np.random.randn(5, 3)
Y_assess = np.random.randn(2, 3)
return X_assess, Y_assess
def func_initialize_parameters_test_case():
"""
initialize_parameters_test_case
"""
n_x, n_h, n_y = 2, 4, 1
return n_x, n_h, n_y
def func_forward_propagation_test_case():
"""
forward_propagation_test_case
"""
np.random.seed(2030)
X_assess = np.random.randn(2, 3)
parameters = {
'W1': np.array([[-0.00416758, -0.00056267],
[-0.02136196, 0.01640271],
[-0.01793436, -0.00841747],
[ 0.00502881, -0.01245288]]),
'W2': np.array([[-0.01057952, -0.00909008,
0.00551454, 0.02292208]]),
'b1': np.array([[ 0.], [ 0.], [ 0.], [ 0.]]),
'b2': np.array([[ 0.]])}
return X_assess, parameters
def func_compute_cost_test_case():
"""
compute_cost_test_case
"""
np.random.seed(2030)
Y_assess = np.random.randn(1, 3)
parameters = {
'W1': np.array([[-0.00416758, -0.00056267],
[-0.02136196, 0.01640271],
[-0.01793436, -0.00841747],
[ 0.00502881, -0.01245288]]),
'W2': np.array([[-0.01057952, -0.00909008,
0.00551454, 0.02292208]]),
'b1': np.array([[ 0.], [ 0.], [ 0.], [ 0.]]),
'b2': np.array([[ 0.]])}
a2 = (np.array([[ 0.5002307 , 0.49985831, 0.50023963]]))
return a2, Y_assess, parameters
def func_backward_propagation_test_case():
"""
backward_propagation_test_case
"""
np.random.seed(2030)
X_assess = np.random.randn(2, 3)
Y_assess = np.random.randn(1, 3)
parameters = {
'W1': np.array([[-0.00416758, -0.00056267],
[-0.02136196, 0.01640271],
[-0.01793436, -0.00841747],
[ 0.00502881, -0.01245288]]),
'W2': np.array([[-0.01057952, -0.00909008,
0.00551454, 0.02292208]]),
'b1': np.array([[ 0.], [ 0.], [ 0.], [ 0.]]),
'b2': np.array([[ 0.]])}
cache = {
'A1': np.array([[-0.00616578, 0.0020626 , 0.00349619],
[-0.05225116, 0.02725659, -0.02646251],
[-0.02009721, 0.0036869 , 0.02883756],
[ 0.02152675, -0.01385234, 0.02599885]]),
'A2': np.array([[ 0.5002307 , 0.49985831, 0.50023963]]),
'Z1': np.array([[-0.00616586, 0.0020626 , 0.0034962 ],
[-0.05229879, 0.02726335, -0.02646869],
[-0.02009991, 0.00368692, 0.02884556],
[ 0.02153007, -0.01385322, 0.02600471]]),
'Z2': np.array([[ 0.00092281, -0.00056678, 0.00095853]])}
return parameters, cache, X_assess, Y_assess
def func_update_parameters_test_case():
"""
update_parameters_test_case
"""
parameters = {
'W1': np.array([[-0.00615039, 0.0169021 ],
[-0.02311792, 0.03137121],
[-0.0169217 , -0.01752545],
[ 0.00935436, -0.05018221]]),
'W2': np.array([[-0.0104319 , -0.04019007,
0.01607211, 0.04440255]]),
'b1': np.array([[ -8.97523455e-07],
[ 8.15562092e-06],
[ 6.04810633e-07],
[ -2.54560700e-06]]),
'b2': np.array([[ 9.14954378e-05]])}
grads = {
'dW1': np.array([[ 0.00023322, -0.00205423],
[ 0.00082222, -0.00700776],
[-0.00031831, 0.0028636 ],
[-0.00092857, 0.00809933]]),
'dW2': np.array([[ -1.75740039e-05, 3.70231337e-03,
-1.25683095e-03, -2.55715317e-03]]),
'db1': np.array([[ 1.05570087e-07],
[ -3.81814487e-06],
[ -1.90155145e-07],
[ 5.46467802e-07]]),
'db2': np.array([[ -1.08923140e-05]])
}
return parameters, grads
def func_nn_model_test_case():
"""
nn_model_test_case
"""
np.random.seed(2030)
X_assess = np.random.randn(2, 3)
Y_assess = np.random.randn(1, 3)
return X_assess, Y_assess
def func_predict_test_case():
"""
predict_test_case
"""
np.random.seed(2030)
X_assess = np.random.randn(2, 3)
parameters = {
'W1': np.array([[-0.00615039, 0.0169021 ],
[-0.02311792, 0.03137121],
[-0.0169217 , -0.01752545],
[ 0.00935436, -0.05018221]]),
'W2': np.array([[-0.0104319 , -0.04019007,
0.01607211, 0.04440255]]),
'b1': np.array([[ -8.97523455e-07],
[ 8.15562092e-06],
[ 6.04810633e-07],
[ -2.54560700e-06]]),
'b2': np.array([[ 9.14954378e-05]])}
return parameters, X_assess
2-导入数据集
- 将
flower
2分类数据加载到变量X,Y中 - 使用
matplotlib
可视化数据集 - 深入了解数据
2.1-加载
# load
X, Y = func_load_planar_dataset()
print(X.shape, Y.shape)
(2, 400) (1, 400)
2.2-可视化
# plot
# X[0, :].shape (400,)
plt.scatter(X[0, :], X[1, :], c=Y.reshape(X[0, :].shape), s=40, cmap=plt.cm.Spectral)
<matplotlib.collections.PathCollection at 0x7f58a99ab670>
2.3-深入了解
shape_X = X.shape
shape_Y = Y.shape
m = shape_X[1]
print('the shape of X is: ', shape_X)
print('the shape of Y is: ', shape_Y)
print('m=%d training examples' % m)
the shape of X is: (2, 400)
the shape of Y is: (1, 400)
m=400 training examples
3-使用简单logistic regression对数据集进行二分类
- 使用sklearn内置函数执行
- 画出决策边界
3.1-构建
clf = sklearn.linear_model.LogisticRegressionCV()
clf.fit(X.T, Y.ravel())
# Y.ravel() # Return a flattened array.
LogisticRegressionCV()
3.2-决策边界
func_plot_decision_boundary(lambda x: clf.predict(x), X, Y)
plt.title('sklearn logistic regression')
Text(0.5, 1.0, 'sklearn logistic regression')
pred_lr = clf.predict(X.T)
print('acc: ', float((np.dot(Y, pred_lr)) + np.dot(1-Y, 1-pred_lr)) / float(Y.size)*100)
acc: 49.25
- 正确率只有49.25%, 由于数据集不是线性可分类的,因此逻辑回归效果不佳
- 接下来试试DNN
4-DNN结构实现
4.1-理论介绍
模型结构
数学原理
输入$x^{(i)}$
建立神经网络的一般方法
- 定义神经网络结构,输入参数,隐藏单元参数等
- 初始化模型参数
- 循环
- 实现前向传播
- 计算损失
- 后向传播以获得梯度
- 更新参数(梯度下降)
- 预测
4.2-定义神经网络结构
- 定义三个变量:
- n_x: 输入层的大小
- n_h: 隐藏层的大小
- n_y: 输出层的大小
- 提示:
- 使用shape来找到n_x和n_y
- 将隐藏层大小硬编码成4
def func_layer_sizes(X, Y):
"""
定义每层参数大小
:param X
:param Y
:return (n_x, n_h, n_y)
"""
n_x = X.shape[0]
n_h = 4
n_y = Y.shape[0]
return (n_x, n_h, n_y)
X_assess, Y_assess = func_layer_sizes_test_case()
(n_x, n_h, n_y) = func_layer_sizes(X_assess, Y_assess)
print(n_x, n_h, n_y)
5 4 2
4.3-初始化模型参数
- 练习
- 实现函数
func_initialize_parameters()
- 实现函数
- 说明
- 确保参数大小正确
- 使用随机初始化权重矩阵
- 使用
np.random.randn(a, b)*0.01
随机初始化维度为(a,b)的矩阵
- 使用
- 将偏差向量初始化为0
- 使用
np.zeros((a,b))
初始化维度为(a,b)的矩阵
- 使用
def func_initialize_parameters(n_x, n_h, n_y):
"""
随机初始化模型参数
:param n_x: size of input layer
:param n_h: size of hidden layer
:param n_y: size of output layer
:return params
"""
np.random.seed(2030)
W1 = np.random.randn(n_h, n_x) * 0.01
b1 = np.zeros((n_h, 1))
W2 = np.random.randn(n_y, n_h) * 0.01
b2 = np.zeros((n_y, 1))
assert (W1.shape == (n_h, n_x))
assert (b1.shape == (n_h, 1))
assert (W2.shape == (n_y, n_h))
assert (b2.shape == (n_y, 1))
params = {
'W1': W1,
'b1': b1,
'W2': W2,
'b2': b2
}
return params
params = func_initialize_parameters(n_x, n_h, n_y)
for key, value in params.items():
print(key, value)
print(value.shape)
W1 [[ 0.0140356 -0.01123472 0.00181204 0.00371685 0.00331453]
[ 0.00616523 -0.00719542 0.00392973 -0.01472587 0.01631223]
[ 0.00700217 -0.00210701 0.00322235 0.0085826 0.01209621]
[-0.01813631 -0.01153197 0.00429659 -0.00105094 0.00331243]]
(4, 5)
b1 [[0.]
[0.]
[0.]
[0.]]
(4, 1)
W2 [[ 0.00530549 0.00229905 -0.00579193 -0.00166288]
[-0.00867708 0.00637114 -0.00827742 -0.00441255]]
(2, 4)
b2 [[0.]
[0.]]
(2, 1)
4.4-循环
- 练习
- 实现
func_forward_propagation()
- 实现
- 说明
- 查看分类器的数学表达式
- 可以使用
func_sigmoid()
函数 - 可以使用
np.tanh()
函数 - 必须执行以下步骤
- 使用
params['']
从中检索出每个参数 - 实现正向传播,计算$Z^{[1]}, A^{[1]}, Z^{[2]}$和$A^{[2]}$(所有训练数据的预测结果向量)
- 使用
- 向后传播所需的值存储在
cache
中,作为反向传播函数的输入
def func_forward_propagation(X, parameters):
"""
前向传播
:param X
:param parameters
return A2, cache
"""
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
Z1 = np.dot(W1, X) + b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2, A1) + b2
A2 = func_sigmoid(Z2)
assert (A2.shape == (1, X.shape[1]))
cache = {
'Z1': Z1,
'A1': A1,
'Z2': Z2,
'A2': A2
}
return A2, cache
X_assess, params = func_forward_propagation_test_case()
X_assess.shape
(2, 3)
params
{'W1': array([[-0.00416758, -0.00056267],
[-0.02136196, 0.01640271],
[-0.01793436, -0.00841747],
[ 0.00502881, -0.01245288]]),
'W2': array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),
'b1': array([[0.],
[0.],
[0.],
[0.]]),
'b2': array([[0.]])}
for key, value in params.items():
print(key, value)
print(value.shape)
W1 [[-0.00416758 -0.00056267]
[-0.02136196 0.01640271]
[-0.01793436 -0.00841747]
[ 0.00502881 -0.01245288]]
(4, 2)
W2 [[-0.01057952 -0.00909008 0.00551454 0.02292208]]
(1, 4)
b1 [[0.]
[0.]
[0.]
[0.]]
(4, 1)
b2 [[0.]]
(1, 1)
A2, cache = func_forward_propagation(X_assess, params)
A2.shape
(1, 3)
for key, value in cache.items():
print(key, value)
print('shape', value.shape)
print('mean:', np.mean(value))
Z1 [[-0.00605859 0.00449566 -0.00110208]
[-0.02388616 0.02943629 0.00624179]
[-0.0283006 0.01735875 -0.00843933]
[ 0.00242969 -0.00977727 -0.00676625]]
shape (4, 3)
mean: -0.002030674846044073
A1 [[-0.00605851 0.00449563 -0.00110208]
[-0.02388161 0.02942779 0.00624171]
[-0.02829305 0.01735701 -0.00843913]
[ 0.00242968 -0.00977696 -0.00676615]]
shape (4, 3)
mean: -0.0020304726884621785
Z2 [[ 0.00018085 -0.00044345 -0.00024671]]
shape (1, 3)
mean: -0.00016977098916522824
A2 [[0.50004521 0.49988914 0.49993832]]
shape (1, 3)
mean: 0.4999575572533775
练习:
- 实现
func_compute_cost()
函数
- 实现
- 说明:
- 计算公式
def func_compute_cost(A2, Y):
"""
计算DNN损失函数
:param A2: the sigmoid output of the second activation, of shape (1, num_samples)
:param Y: 'true' labels vector of shape (1, num_samples)
return cost: cost value
"""
m = Y.shape[1] # num_samples
log_probs = np.multiply(np.log(A2), Y) + np.multiply(np.log(1-A2), 1-Y)
cost = -1 / m * np.sum(log_probs)
cost = np.squeeze(cost) # eg. turns [[17]] into 17
assert(isinstance(cost, float))
return cost
A2, Y_assess, params = func_compute_cost_test_case()
A2.shape
(1, 3)
Y_assess.shape
(1, 3)
for key, value in params.items():
print(key, value)
print('shape', value.shape)
W1 [[-0.00416758 -0.00056267]
[-0.02136196 0.01640271]
[-0.01793436 -0.00841747]
[ 0.00502881 -0.01245288]]
shape (4, 2)
W2 [[-0.01057952 -0.00909008 0.00551454 0.02292208]]
shape (1, 4)
b1 [[0.]
[0.]
[0.]
[0.]]
shape (4, 1)
b2 [[0.]]
shape (1, 1)
print('cost=', func_compute_cost(A2, Y_assess))
cost= 0.6926644838406011
- 练习
- 实现函数
func_backward_propagation()
- 实现函数
- 说明
- 反向传播通常是DNN中最难(最数学)的部分,详情见下图
- 由于激活函数是
tanh
,所以$g^{[1]’}(z) = 1-a^2$
- 反向传播通常是DNN中最难(最数学)的部分,详情见下图
def func_backward_propagation(parameters, cache, X, Y):
"""
DNN反向传播
:param parameters:
:param cache: Z1, A1, ...
:param X:
:param Y:
:return grads:
"""
m = X.shape[1]
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
A1 = cache['A1']
A2 = cache['A2']
dZ2 = A2 - Y
dW2 = 1 / m * np.dot(dZ2, A1.T)
db2 = 1 / m * np.sum(dZ2, axis=1, keepdims=True)
dZ1 = np.multiply(np.dot(W2.T, dZ2), 1-np.power(A1, 2))
dW1 = 1 / m * np.dot(dZ1, X.T)
db1 = 1 / m * np.sum(dZ1, axis=1, keepdims=True)
grads = {
'dW2': dW2,
'db2': db2,
'dW1': dW1,
'db1': db1
}
return grads
params, cache, X_assess, Y_assess = func_backward_propagation_test_case()
for key, value in params.items():
print(key, value)
print(value.shape)
W1 [[-0.00416758 -0.00056267]
[-0.02136196 0.01640271]
[-0.01793436 -0.00841747]
[ 0.00502881 -0.01245288]]
(4, 2)
W2 [[-0.01057952 -0.00909008 0.00551454 0.02292208]]
(1, 4)
b1 [[0.]
[0.]
[0.]
[0.]]
(4, 1)
b2 [[0.]]
(1, 1)
for key, value in cache.items():
print(key, value)
print(value.shape)
A1 [[-0.00616578 0.0020626 0.00349619]
[-0.05225116 0.02725659 -0.02646251]
[-0.02009721 0.0036869 0.02883756]
[ 0.02152675 -0.01385234 0.02599885]]
(4, 3)
A2 [[0.5002307 0.49985831 0.50023963]]
(1, 3)
Z1 [[-0.00616586 0.0020626 0.0034962 ]
[-0.05229879 0.02726335 -0.02646869]
[-0.02009991 0.00368692 0.02884556]
[ 0.02153007 -0.01385322 0.02600471]]
(4, 3)
Z2 [[ 0.00092281 -0.00056678 0.00095853]]
(1, 3)
grads = func_backward_propagation(params, cache, X_assess, Y_assess)
for key, value in grads.items():
print(key, value)
print(value.shape)
dW2 [[-0.00013434 -0.03767573 0.01092386 0.02535612]]
(1, 4)
db2 [[1.09982824]]
(1, 1)
dW1 [[-0.00687442 -0.0060129 ]
[-0.00589216 -0.00516006]
[ 0.00358158 0.00313207]
[ 0.01488723 0.01302015]]
(4, 2)
db1 [[-0.0116354 ]
[-0.00998301]
[ 0.00606112]
[ 0.02519569]]
(4, 1)
- 练习
- 实现参数更新。使用梯度下降。规则为:$\theta = \theta - \alpha \frac{\partial J }{ \partial \theta }$
- 提示
- 具有良好的学习速率(收敛)图和较差的学习速率(发散)的图如下
- 具有良好的学习速率(收敛)图和较差的学习速率(发散)的图如下
def func_update_parameters(parameters, grads, lr=0.5):
"""
用梯度下降法求解参数
:param parameters:
:param grads:
:return params:
"""
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
dW1 = grads['dW1']
db1 = grads['db1']
dW2 = grads['dW2']
db2 = grads['db2']
W1 = W1 - lr * dW1
b1 = b1 - lr * db1
W2 = W2 - lr * dW2
b2 = b2 - lr * db2
params = {
'W1': W1,
'b1': b1,
'W2': W2,
'b2': b2
}
return params
parameters, grads = func_update_parameters_test_case()
parameters = func_update_parameters(parameters, grads)
for key, value in parameters.items():
print(key, value)
print(value.shape)
W1 [[-0.006267 0.01792921]
[-0.02352903 0.03487509]
[-0.01676255 -0.01895725]
[ 0.00981865 -0.05423187]]
(4, 2)
b1 [[-9.50308498e-07]
[ 1.00646934e-05]
[ 6.99888206e-07]
[-2.81884090e-06]]
(4, 1)
W2 [[-0.01042311 -0.04204123 0.01670053 0.04568113]]
(1, 4)
b2 [[9.69415948e-05]]
(1, 1)
4.5-集成4.2-4.4
- 练习
- 实现
func_nn_model()
- 实现
- 说明
- DNN必须以正确的顺序组合先前构建的函数
def func_nn_model(X, Y, n_h, lr, num_epochs=10000, print_cost=False):
"""
DNN模型结构
:param X:
:param Y:
:param n_h: size of hidden layer
:param lr: learning rate
:param num_epochs:
:param print_cost:
:return params
"""
np.random.seed(2030)
n_x, _, n_y = func_layer_sizes(X, Y)
parameters = func_initialize_parameters(n_x, n_h, n_y)
for i in range(num_epochs):
A2, cache = func_forward_propagation(X, parameters)
cost = func_compute_cost(A2, Y)
grads = func_backward_propagation(parameters, cache, X, Y)
parameters = func_update_parameters(parameters, grads, lr)
if print_cost and i % 1000 == 0:
print('cost after iter %i: %f' % (i, cost))
return parameters
X_assess, Y_assess = func_nn_model_test_case()
parameters = func_nn_model(X_assess, Y_assess, n_h=4, print_cost=True)
cost after iter 0: 0.693205
cost after iter 1000: -inf
cost after iter 2000: -inf
cost after iter 3000: -inf
cost after iter 4000: -inf
/tmp/ipykernel_33337/3831275435.py:35: RuntimeWarning: overflow encountered in exp
s = 1/(1+np.exp(-x))
/tmp/ipykernel_33337/2034926829.py:10: RuntimeWarning: divide by zero encountered in log
log_probs = np.multiply(np.log(A2), Y) + np.multiply(np.log(1-A2), 1-Y)
/home/meiyunhe/softwares/miniconda3/envs/python38/lib/python3.8/site-packages/numpy/core/fromnumeric.py:86: RuntimeWarning: invalid value encountered in reduce
return ufunc.reduce(obj, axis, dtype, out, **passkwargs)
cost after iter 5000: -inf
cost after iter 6000: -inf
cost after iter 7000: -inf
cost after iter 8000: -inf
cost after iter 9000: -inf
for key, value in parameters.items():
print(key, value)
print(value.shape)
W1 [[ 11.52632597 4.53170427]
[ -11.52483312 -4.53805397]
[ 3.7056901 -5.59975822]
[-135.67556482 43.1988336 ]]
(4, 2)
b1 [[ 3.76204789]
[ -3.75833722]
[-11.97631404]
[127.6183328 ]]
(4, 1)
W2 [[-4101.12484223 4100.86581429 3195.42022681 -1806.0368121 ]]
(1, 4)
b2 [[-3201.6699135]]
(1, 1)
4.6-预测
练习
- 实现
func_predict()
- 实现
- 提示
- 预测公式为:
def func_predict(parameters, X):
"""
预测
:param parameters:
:param X:
:return preds
"""
A2, _ = func_forward_propagation(X, parameters)
preds = np.round(A2)
return preds
parameters, X_assess = func_predict_test_case()
preds = func_predict(parameters, X_assess)
preds
array([[1., 0., 0.]])
5-使用DNN对数据集进行二分类
X.shape
(2, 400)
Y.shape
(1, 400)
parameters = func_nn_model(X, Y, n_h=4, num_epochs=10000, print_cost=True)
cost after iter 0: 0.693208
cost after iter 1000: 0.255412
cost after iter 2000: 0.237878
cost after iter 3000: 0.230251
cost after iter 4000: 0.225817
cost after iter 5000: 0.222741
cost after iter 6000: 0.220396
cost after iter 7000: 0.218504
cost after iter 8000: 0.216923
cost after iter 9000: 0.215573
func_plot_decision_boundary(lambda x: func_predict(parameters, x.T), X, Y)
plt.title('decision boundary for hidden layer size %i' % 4)
plt.show()
preds = func_predict(parameters, X)
print('acc: ', (np.dot(Y, preds.T)+np.dot(1-Y, (1-preds).T))/float(Y.size)*100)
acc: [[91.25]]
- 与简单逻辑回归相比,DNN准确性更高,它学习了flower的叶子图案,与逻辑回归不同,DNN能够学习非线性的决策边界
4.7-调整隐藏层的大小
- 观察不同大小隐藏层的模型表现
plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1,2,3,4,5,10,20]
for i, n_h in enumerate(hidden_layer_sizes):
plt.subplot(5, 2, i+1)
parameters = func_nn_model(X, Y, n_h, num_epochs=5000)
func_plot_decision_boundary(lambda x: func_predict(parameters, x.T), X, Y)
preds = func_predict(parameters, X)
acc = float((np.dot(Y,preds.T) + np.dot(1-Y,1-preds.T))/float(Y.size)*100)
# print ("Accuracy for {} hidden units: {} %".format(n_h, acc))
plt.title("Accuracy for {} hidden units: {} %".format(n_h, acc))
- 较大的模型能够更好的拟合训练集
- 隐藏层units数量也不是越多越好
- 可以借助正则化,避免模型过拟合
- 正则化方法:
- l2正则
- dropout
- 数据增强
- early stopping
6-模型在其他数据集上的性能
def func_train_predict_extra_dataset():
"""
在其他数据集上的表现
:return
"""
nosiy_circles, nosiy_moons, blobs, gaussian_quantiles, no_structure = func_load_extra_datasets()
datasets = {
'nosiy_circles': nosiy_circles,
'nosiy_moons': nosiy_moons,
'blobs': blobs,
'gaussian_quantiles': gaussian_quantiles
}
plt.figure(figsize=(16, 16))
for i, dataset in enumerate(datasets.keys()):
plt.subplot(2, 2, i+1)
X, Y = datasets[dataset]
X, Y = X.T, np.expand_dims(Y, axis=0)
if dataset == 'blobs':
Y = Y % 2
# plt.scatter(X[0, :], X[1, :], c=Y.reshape(X[0, :].shape), s=40, cmap=plt.cm.Spectral)
parameters = func_nn_model(X, Y, n_h=4, num_epochs=10000, print_cost=False)
func_plot_decision_boundary(lambda x: func_predict(parameters, x.T), X, Y)
plt.title('dataset %s decision boundary for hidden layer size %i' % (dataset, 4))
plt.show()
func_train_predict_extra_dataset()